## Calculation Policy: Progression in addition and subtraction (including fractions)

| Addition and subtraction calculations | Early Years <br> ELG - Add and subtract two single-digit numbers | Year 1 <br> Add and subtract one- and twodigit numbers to 20 including zero | Year 2 <br> Add and subtract numbers using concrete objects, pictorial representations and mentally, including <br> - A two-digit number <br> - A two-digit number and tens <br> - Two two-digit numbers <br> - Adding three one-digit numbers | Year 3 <br> Add and subtract numbers mentally including <br> - A three-digit number and ones <br> - A three-digit number and tens <br> - A three-digit number and hundreds <br> Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction | Year 4 <br> Add and subtract numbers with up to 4 digits using formal written methods of columnar addition and subtraction where appropriate | Year 5 <br> Add and subtract whole numbers with more than 4 digits including using formal written methods (columnar addition and subtraction <br> Add and subtract numbers mentally with increasingly large numbers | Year 6 <br> Perform mental calculations, including with mixed operations and large numbers. <br> Use their knowledge of order of operations to carry out calculations involving the four operations |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Addition and subtraction with fractions |  |  | Write simple fractions for example $1 / 2$ of $6=3$ | Add and subtract fractions with the same denominator within one whole e.g. $1 / 7+5 / 7=6 / 7$ | Add and subtract fractions with the same denominator | Add and subtract fractions with the same denominator and denominators that are multiples of the same number | Add and subtract fractions with different denominators and mixed numbers using the concept of equivalent fractions |

All images used in this calculation policy have been taken from https://whiterosemaths.com/

## Addition - concrete, pictorial and abstract

Key language: sum, total, parts and wholes, plus, add altogether, more, 'is equal to' and 'is the same as'

|  | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Combining two parts to make a whole (use a range of resources) | Use a range of items to combine <br> Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars). | Children to represent the cubes using dots or crosses. They could put each part on a part whole model too. | $4+3=7$ <br> Four is a part, 3 is a part and the whole is seven. |
| Start at the bigger number and count on using cubes. | Counting on using number lines using cubes or Numicon. | A bar model which encourages the children to count on, rather than count all. | The abstract number line: <br> What is 2 more than 4 ? <br> What is the sum of 2 and 4 ? <br> What is the total of 4 and 2 ? $4+2$ |
| Regrouping to make 10 | Regrouping to make 10 ; using ten frames and counters/cubes or using Numicon. $6+5$ | Children to draw the ten frame and counters/cubes. | Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$ |

All images used in this calculation policy have been taken from https://whiterosemaths.com/

|  | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Adding three single digits <br> Year 2 | Use ten frames and counters to add the number $4+3+6=$ <br> $4+6=10$ $10+3=13$ | Children to draw the ten frame and counters | Children use their knowledge of number bonds to 10 to help them add more efficiently |
| Use of base 10 to combine two numbers (TO + 00 | TO + O using base 10 . Continue to develop understanding of partitioning and place value. $41+8$ | Children to represent the base 10 e.g. lines for tens and dot/crosses for ones. | $41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$ |
| Use of base 10 to combine two numbers (TO + TO) | TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$ | Chidren to represent the base 10 in a place value chart. | Looking for ways to make 10. |



## Subtraction - concrete, pictorial and abstract

## Key language: take away, less than, the difference, subtract, minus, fewer and decrease

|  | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Taking away ones | Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used). $4-3=1$ | Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. | 4-3 $=$ $\left.\right\|^{--}=4-3$ $\square$ |
| Counting back <br> EYFS (concrete <br> and pictorial)/ <br> Year 1 <br> (concrete- <br> abstract) | Counting back (using number lines or number tracks) children start with 6 and count back 2 . $6-2=4$ | Children to represent what they see pictorially e.g. | The abstract number line: <br> What is 2 more than 4 ? <br> What is the sum of 2 and 4 ? <br> What is the total of 4 and 2 ? $4+2$ |
| Finding the difference <br> Year 1 and Year 2 $\square$ | Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). <br> Calculate the difference between 8 and 5 . | Children to represent the base 10 pictorially. | Find the difference between 8 and 5 . $8-5$, the difference is $\square$ Children to explore why $9-6=8-5=7-4$ have the same difference. |

All images used in this calculation policy have been taken from https://whiterosemaths.com/

|  | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Making 10 (e.g. subtracting 5 from 14) | Making 10 using ten frames. <br> 14-5 | Children to present the ten frame pictorially and discuss what they did to make 10 . | Children to show how they can make 10 by partitioning the subtrahend. $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$ |
| Column method using base 10 (e.g. for TO - O) | Column method using base 10 . 48-7 | Children to represent the base 10 pictorially. | Column method or children could count back 7 . |
| Column method using base 10 with exchange (e.g. for 41-26) | Column method using base 10 and having to exchange. $41-26$  | Represent the base 10 pictorially, remembering to show the exchange. | Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because $41=30+11$. |



Addition and subtraction with fractions

|  | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Counting in fractions Equivalence between quarters and half $\square$ | What fraction of the cubes are yellow? | What would come next? | What's the same, what's different? <br>  |
| Add and subtract fractions with the same denominator within one whole Year 3 | Sharing chocolates in a box |  | Find the missing fractions: $\begin{aligned} & \frac{7}{7}-\frac{3}{7}=\frac{2}{7}+\frac{\square}{7} \\ & \frac{\square}{9}-\frac{5}{9}=\frac{4}{9}-\frac{2}{9} \end{aligned}$ |
| Add and subtract fractions with the same denominator Year 4 | Use strips of paper to calculate $2-\frac{3}{4}=\frac{8}{4}-\frac{3}{4}=\frac{5}{4}=1 \frac{1}{4}$ | Drawing bars to calculate with fractions $\square$ $\frac{13}{5}-\frac{\square}{5}=\frac{6}{5}$ | Find the difference between $2 \text { and } \frac{2}{3} \quad 2 \text { and } \frac{2}{5}$ |
| Add and subtract fractions with denominators that are multiples of the same number Year 5 <br> Add mixed numbers Year 6 | Use of cubes to convert mixed numbers to improper fractions (needed for subtraction with mixed numbers in Year 6) | Use of bar model for equivalence between <br> Two children are solving $\frac{1}{3}+\frac{4}{15}$ <br> fractions <br> Eva starts by drawing this model: <br> Alex starts by drawing this model: | Year 5 $\frac{3}{5}+\frac{1}{10}+\frac{3}{20}$ <br> Year 6 $34 \frac{1}{9}+5 \frac{2}{5}=$ <br> Year 6 $3 \frac{2}{5}-1 \frac{7}{10}$ |

All images used in this calculation policy have been taken from https://whiterosemaths.com/

Calculation Policy: Progression in multiplication and division (including fractions)

| Multiplication and division calculations | Year 1 <br> - Count in multiples of twos, fives and tens. <br> - Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. | Year 2 <br> - Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division $(\div)$ and equals (=) signs | Year 3 <br> - Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including two-digit numbers times one-digit numbers, using mental and progressing to formal written methods | Year 4 <br> - Multiply two-digit numbers and threedigit numbers by a onedigit number using formal written layout | Year 5 <br> - Multiply numbers up to 4 digits by a one or two-digit number using a formal written method, including long multiplication for twodigit numbers <br> - Multiply and divide numbers mentally drawing upon known facts <br> - Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context <br> - Multiply and divide whole numbers and those involving decimals by 10,100 and 1000 | Year 6 <br> - Multiply multi-digit numbers up to 4 digits by a two-digit whole numbers using the formal written method of long multiplication <br> - Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole numbers, fractions or rounding <br> - divide up to 4 -digit numbers by 2-digit numbers using the formal written method of short division, interpreting remainders <br> - perform mental calculations with mixed operations and large numbers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Multiplication and division with fractions |  |  |  |  | - Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams | - Multiply simple pairs of proper fractions writing the answer in its simplest form e.g. $1 / 4 \mathrm{x}$ $1 / 2=1 / 8$ <br> - Divide proper fractions by whole numbers e.g. $1 / 3 \div 2=1 / 6$ |

All images used in this calculation policy have been taken from https://whiterosemaths.com/

Multiplication - concrete, pictorial and abstract
Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups

|  | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Recognising, making and adding equal groups <br> EYFS (concrete and pictorial)/ Year 1 (concrete - abstract) | Repeated grouping/repeated addition Repe $3 \times 4$ $4+4$ <br> $4+4+4$ <br> There are 3 equal groups, with 4 in each group. | Children to represent the practical resources in a picture and use a bar model. <br> 888888 <br> ? | $\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$ |
| Using a number line to show repeated groups | Number lines to show repeated groups$3 \times 4$ <br> Cuisenaire rods can be used too. | Represent this pictorially alongside a number line e.g.: | Abstract number line showing three jumps of four. $3 \times 4=12$ |
| Make arrays by making equal groups and building them into columns or rows | Use arrays to illustrate commutativity counters and other objects can also be used. <br> $2 \times 5=5 \times 2$ <br> 2 lots of 5 <br> 5 lots of 2 | Children to represent the arrays pictorially. | Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$ |

All images used in this calculation policy have been taken from https://whiterosemaths.com/

|  | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Partition to multiply using numicon or base 10 | Partition to multiply using Numicon, base 10 or Cuisenaire rods. <br> $4 \times 15$ | Children to represent the concrete manipulatives pictorially. | Children to be encouraged to show the steps they have taken. $\begin{array}{r} 4 \times 15 \\ 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{array}$ <br> A number line can also be used |
| 2 digit x 1 digit using place value counters, base 10 etc | Formal column method with place value counters (base 10 can also be used.) $3 \times 23$ | Children to represent the counters pictorially. | Children to record what it is they are doing to show understanding. $\begin{array}{cc} 3 \times 23 & 3 \times 20=60 \\ 1 / & 3 \times 3=9 \\ 203 & 60+9=69 \end{array}$ $\begin{array}{r} 23 \\ \times \quad 3 \\ \hline 69 \\ \hline \end{array}$ |
| Column multiplication introduced with place value counters (2 and 3 digit $x$ 1 digit) Year 4 | $34 \times 5$ using place value counters | Children to represent the counters/base 10, pictorially. |  H T O <br>  2 0 3 <br> $\times$   3 <br>     |

All images used in this calculation policy have been taken from https://whiterosemaths.com/


## Key language: share, group, divide, divide by, half

|  | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| Division as sharing into equal groups | Sharing using a range of objects. $6 \div 2$ | Represent the sharing pictorially. | $6 \div 2=3$3 3 <br> Children should also be encouraged to use their 2 times tables facts. |
| Use a umber line to show subtraction of equal groups | Repeated subtraction using Cuisenaire rods above a ruler. $6 \div 2$ <br> 3 groups of 2 | Children to represent repeated subtraction pictorially. | Abstract number line to represent the equal groups that have been subtracted. |
| Division with sharing into equal groups and finding remainders | $2 \mathrm{~d}+1 \mathrm{~d}$ with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used. <br> $13 \div 4$ <br> Use of lollipop sticks to form wholes- squares are made because we are dividing by 4 . $\square$ $\square$ $\square$ <br> There are 3 whole squares, with 1 left over. | Children to represent the lollipop sticks pictorially. <br> There are 3 whole squares, with 1 left over. | $13 \div 4-3$ remainder 1 <br> Children should be encouraged to use the times table facts; they could also represer repeated addition on a number line. <br> '3 groups of 4 , with 1 left over' |

All images used in this calculation policy have been taken from https://whiterosemaths.com/


All images used in this calculation policy have been taken from https://whiterosemaths.com/


Multiplication and division with fractions

|  | Pictorial | Abstract |
| :---: | :---: | :---: |
| Multiply proper fractions by whole numbers | $\frac{1}{10}$ <br> $\frac{2}{10}$ $\frac{2}{10}$ $\frac{2}{10}$        <br> 10          | $\frac{2}{7} \times 2 \quad 4 \times \frac{3}{20}$ |
| Multiply mixed numbers by whole numbers | $\begin{aligned} & 2 \times 3=6 \\ & \frac{3}{4} \times 3=\frac{9}{4}=2 \frac{1}{4} \quad 2 \frac{3}{4} \times 3 \\ & 6+2 \frac{1}{4}=8 \frac{1}{4} \end{aligned}$ | $4 \times 3 \frac{3}{5} \quad 2 \frac{7}{8}$ |
| Multiply simple pairs of proper fractions <br> Year 6 | Shade the diagram to calculate $\frac{1}{3} \times \frac{1}{2}=$ | $\begin{aligned} & \frac{2}{3} \times \frac{1}{4}=\frac{2}{3} \times \frac{3}{4}= \\ & \\ & =\frac{3}{12} \end{aligned}$ |
| Divided proper fractions by whole numbers | $\frac{3}{4} \div 3=$ $\frac{4}{7} \div 4=$ | $\begin{gathered} \frac{6}{11} \div 3=\quad \frac{9}{11} \div 3= \\ \frac{20}{23} \div \square=\frac{5}{23} \end{gathered}$ |
| Divided proper fractions by whole numbers (using equivalence of fractions) <br> Year 6 |    <br>    <br> dividing $\frac{2}{3}$ by 4 <br> (need to find an equivalent fraction first before dividing) | $\begin{gathered} \frac{1}{5} \div 3=\frac{2}{5} \div 3= \\ \square \div 4=\frac{7}{36} \end{gathered}$ |

All images used in this calculation policy have been taken from https://whiterosemaths.com/

All images used in this calculation policy have been taken from https://whiterosemaths.com/

